翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

hyperbolic secant distribution : ウィキペディア英語版
hyperbolic secant distribution

In probability theory and statistics, the hyperbolic secant distribution is a continuous probability distribution whose probability density function and characteristic function are proportional to the hyperbolic secant function. The hyperbolic secant function is equivalent to the inverse hyperbolic cosine, and thus this distribution is also called the inverse-cosh distribution.
== Explanation ==

A random variable follows a hyperbolic secant distribution if its probability density function (pdf) can be related to the following standard form of density function by a location and shift transformation:
:f(x) = \frac12 \; \operatorname\!\left(\frac\,x\right)\! ,
where "sech" denotes the hyperbolic secant function.
The cumulative distribution function (cdf) of the standard distribution is
:F(x) = \frac12 + \frac \arctan\!\left()
\! ,
: = \frac \arctan\!\left() \! .
where "arctan" is the inverse (circular) tangent function.
The inverse cdf (or quantile function) is
:F^(p) = -\frac\, \operatorname\!\left() \! ,
: = \frac\, \ln\!\left() \! .
where "arsinh" is the inverse hyperbolic sine function and "cot" is the (circular) cotangent function.
The hyperbolic secant distribution shares many properties with the standard normal distribution: it is symmetric with unit variance and zero mean, median and mode, and its pdf is proportional to its characteristic function. However, the hyperbolic secant distribution is leptokurtic; that is, it has a more acute peak near its mean, and heavier tails, compared with the standard normal distribution.
Johnson et al. (1995, p147) place this distribution in the context of a class of generalised forms of the logistic distribution, but use a different parameterisation of the standard distribution compared to that here. Ding (2014) shows three occurrences of the Hyperbolic secant distribution in statistical modeling and inference.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「hyperbolic secant distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.